NMM/OMTOriginal Article

Mathematical Analysis of the Flow of Hyaluronic Acid Around Fascia During Manual Therapy Motions

Max Roman, PhD; Hans Chaudhry, PhD; Bruce Bukiet, PhD; Antonio Stecco, MD; and Thomas W. Findley, MD, PhD
Notes and Affiliations
Notes and Affiliations

Received: August 23, 2012

Accepted: January 28, 2013

Published: August 1, 2013

J Osteopath Med; 113(8): 600-610

Context: More research is needed to understand the flow characteristics of hyaluronic acid (HA) during motions used in osteopathic manipulative treatment and other manual therapies.

Objectives: To apply a 3-dimensional mathematical model to explore the relationship between the 3 manual therapy motions (constant sliding, perpendicular vibration, and tangential oscillation) and the flow characteristics of HA below the fascial layer.

Methods: The Squeeze Film Lubrication theory of fluid mechanics for flow between 2 plates was used, as well as the Navier-Stokes equations.

Results: The fluid pressure of HA increased substantially as fascia was deformed during manual therapies. There was a higher rate of pressure during tangential oscillation and perpendicular vibration than during constant sliding. This variation of pressure caused HA to flow near the edges of the fascial area under manipulation, and this flow resulted in greater lubrication. The pressure generated in the fluid between the muscle and the fascia during osteopathic manipulative treatment causes the fluid gap to increase. Consequently, the thickness between 2 fascial layers increases as well. Thus, the presence of a thicker fluid gap can improve the sliding system and permit the muscles to work more efficiently.

Conclusions: The mathematical model employed by the authors suggests that inclusion of perpendicular vibration and tangential oscillation may increase the action of the treatment in the extracellular matrix, providing additional benefits in manual therapies that currently use only constant sliding motions.

Read Full Article